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Chapter 1

Rudolf E. Kálmán

Rudolf (Rudy) Emil Kálmán[1] (Hungarian: Kálmán
Rudolf Emil; born May 19, 1930) is a Hungarian-born
American electrical engineer, mathematician, and inven-
tor. He is most noted for his co-invention and devel-
opment of the Kalman filter, a mathematical algorithm
that is widely used in signal processing, control systems,
and Guidance, navigation and control. For this work,
U.S. President Barack Obama rewarded Kálmán with the
National Medal of Science on October 7, 2009.

1.1 Biography

Rudolf Kálmán was born in Budapest in 1930. After em-
igrating to the United States in 1943, he earned his bach-
elor’s degree in 1953 and his master’s degree in 1954,
both from the Massachusetts Institute of Technology, in
electrical engineering. Kálmán completed his doctorate
in 1957 at Columbia University in New York City.
Kálmán worked as a Research Mathematician at the
Research Institute for Advanced Studies in Baltimore,
Maryland from 1958 until 1964. He was a profes-
sor at Stanford University from 1964 until 1971, and
then a Graduate Research Professor and the Director
of the Center for Mathematical System Theory, at the
University of Florida from 1971 until 1992. Starting
in 1973, he also held the chair of Mathematical System
Theory at the Swiss Federal Institute of Technology in
Zürich, Switzerland.

1.2 Work

Kálmán is an electrical engineer by his undergraduate and
graduate education at M.I.T. and Columbia University,
and he is noted for his co-invention of the Kalman filter
(or Kalman-Bucy Filter), which is a mathematical tech-
nique widely used in the digital computers of control sys-
tems, navigation systems, avionics, and outer-space ve-
hicles to extract a signal from a long sequence of noisy
and/or incomplete technical measurements, usually those
done by electronic and gyroscopic systems.
Kálmán’s ideas on filtering were initially met with vast

skepticism, so much so that he was forced to do the
first publication of his results in mechanical engineering,
rather than in electrical engineering or systems engineer-
ing. Kálmán had more success in presenting his ideas,
however, while visiting Stanley F. Schmidt at the NASA
Ames Research Center in 1960. This led to the use of
Kálmán filters during the Apollo program, and further-
more, in the NASA Space Shuttle, in Navy submarines,
and in unmanned aerospace vehicles and weapons, such
as cruise missiles.

1.3 Awards and honors

Kálmán is a member of the U.S. National Academy of
Sciences, the American National Academy of Engineer-
ing, and theAmericanAcademy ofArts and Sciences. He
is a foreign member of the Hungarian, French, and Rus-
sian Academies of Science. He has been awarded many
honorary doctorates from other universities. In 2012 he
became a fellow of the American Mathematical Soci-
ety.[2]

Kálmán received the IEEE Medal of Honor in 1974, the
IEEE Centennial Medal in 1984, the Inamori founda-
tion’s Kyoto Prize in Advanced Technology in 1985, the
Steele Prize of the American Mathematical Society in
1987, the Richard E. Bellman Control Heritage Award
in 1997,[3] and the National Academy of Engineering’s
Charles Stark Draper Prize in 2008.

1.4 Selected publications

• Kalman, R.E. (1960). “A new approach to
linear filtering and prediction problems”.
Journal of Basic Engineering 82 (1): 35–45.
doi:10.1115/1.3662552. Retrieved 2013-04-08.

• Kalman, R.E.; Bucy, R.S. (1961). “New Results in
Linear Filtering and Prediction Theory”. Retrieved
2013-04-08.
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Chapter 2

Kalman filter

Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction

to measurements

Measurements

Next timestep

Output estimate
of state

The Kalman filter keeps track of the estimated state of the sys-
tem and the variance or uncertainty of the estimate. The es-
timate is updated using a state transition model and measure-
ments. x̂k|k−1 denotes the estimate of the system’s state at time
step k before the k-th measurement y has been taken into ac-
count; Pk|k−1 is the corresponding uncertainty.

Kalman filtering, also known as linear quadratic es-
timation (LQE), is an algorithm that uses a series of
measurements observed over time, containing noise (ran-
dom variations) and other inaccuracies, and produces es-
timates of unknown variables that tend to be more pre-
cise than those based on a single measurement alone.
More formally, the Kalman filter operates recursively on
streams of noisy input data to produce a statistically op-
timal estimate of the underlying system state. The filter
is named after Rudolf (Rudy) E. Kálmán, one of the pri-
mary developers of its theory.
The Kalman filter has numerous applications in technol-
ogy. A common application is for guidance, navigation
and control of vehicles, particularly aircraft and space-
craft. Furthermore, the Kalman filter is a widely applied
concept in time series analysis used in fields such as signal
processing and econometrics. Kalman filters also are one
of the main topics in the field of Robotic motion plan-
ning and control, and sometimes included in Trajectory
optimization.
The algorithm works in a two-step process. In the predic-
tion step, the Kalman filter produces estimates of the cur-
rent state variables, along with their uncertainties. Once
the outcome of the next measurement (necessarily cor-
rupted with some amount of error, including random
noise) is observed, these estimates are updated using a
weighted average, with more weight being given to esti-
mates with higher certainty. Because of the algorithm’s

recursive nature, it can run in real time using only the
present input measurements and the previously calculated
state and its uncertainty matrix; no additional past infor-
mation is required.
It is a common misconception that the Kalman filter as-
sumes that all error terms and measurements are Gaus-
sian distributed. Kalman’s original paper derived the fil-
ter using orthogonal projection theory to show that the
covariance is minimized, and this result does not require
any assumption, e.g., that the errors are Gaussian.[1] He
then showed that the filter yields the exact conditional
probability estimate in the special case that all errors are
Gaussian-distributed.
Extensions and generalizations to the method have also
been developed, such as the extended Kalman filter and
the unscented Kalman filter which work on nonlinear sys-
tems. The underlying model is a Bayesian model similar
to a hidden Markov model but where the state space of
the latent variables is continuous and where all latent and
observed variables have Gaussian distributions.

2.1 Naming and historical develop-
ment

Rudolf Emil Kalman, co-inventor and developer of the Kalman
filter.

The filter is named after Hungarian émigré Rudolf E.

3

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/State_space_(controls)
https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n
https://en.wikipedia.org/wiki/Kalman_filter#Applications
https://en.wikipedia.org/wiki/Guidance,_navigation_and_control_(engineering)
https://en.wikipedia.org/wiki/Guidance,_navigation_and_control_(engineering)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Weighted_mean
https://en.wikipedia.org/wiki/Real-time_Control_System
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Unscented_Kalman_filter#Unscented_Kalman_filter
https://en.wikipedia.org/wiki/Bayesian_model
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Rudolf_Emil_Kalman
https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n


4 CHAPTER 2. KALMAN FILTER

Kálmán, although Thorvald Nicolai Thiele[2][3] and Peter
Swerling developed a similar algorithm earlier. Richard
S. Bucy of the University of Southern California con-
tributed to the theory, leading to it often being called the
Kalman–Bucy filter. Stanley F. Schmidt is generally cred-
ited with developing the first implementation of a Kalman
filter. It was during a visit by Kalman to the NASAAmes
Research Center that he saw the applicability of his ideas
to the problem of trajectory estimation for the Apollo
program, leading to its incorporation in the Apollo nav-
igation computer. This Kalman filter was first described
and partially developed in technical papers by Swerling
(1958), Kalman (1960) and Kalman and Bucy (1961).
Kalman filters have been vital in the implementation of
the navigation systems of U.S. Navy nuclear ballistic mis-
sile submarines, and in the guidance and navigation sys-
tems of cruisemissiles such as theU.S. Navy’s Tomahawk
missile and the U.S. Air Force's Air Launched Cruise
Missile. It is also used in the guidance and navigation sys-
tems of the NASA Space Shuttle and the attitude control
and navigation systems of the International Space Station.
This digital filter is sometimes called the Stratonovich–
Kalman–Bucy filter because it is a special case of a more
general, non-linear filter developed somewhat earlier by
the Soviet mathematician Ruslan Stratonovich.[4][5][6][7]
In fact, some of the special case linear filter’s equa-
tions appeared in these papers by Stratonovich that were
published before summer 1960, when Kalman met with
Stratonovich during a conference in Moscow.

2.2 Overview of the calculation

The Kalman filter uses a system’s dynamics model (e.g.,
physical laws of motion), known control inputs to that
system, and multiple sequential measurements (such as
from sensors) to form an estimate of the system’s varying
quantities (its state) that is better than the estimate ob-
tained by using any one measurement alone. As such, it
is a common sensor fusion and data fusion algorithm.
All measurements and calculations based on models are
estimates to some degree. Noisy sensor data, approxima-
tions in the equations that describe how a system changes,
and external factors that are not accounted for introduce
some uncertainty about the inferred values for a system’s
state. The Kalman filter averages a prediction of a sys-
tem’s state with a new measurement using a weighted av-
erage. The purpose of the weights is that values with
better (i.e., smaller) estimated uncertainty are “trusted”
more. The weights are calculated from the covariance, a
measure of the estimated uncertainty of the prediction of
the system’s state. The result of the weighted average is
a new state estimate that lies between the predicted and
measured state, and has a better estimated uncertainty
than either alone. This process is repeated every time
step, with the new estimate and its covariance informing

the prediction used in the following iteration. This means
that the Kalman filter works recursively and requires only
the last “best guess”, rather than the entire history, of a
system’s state to calculate a new state.
Because the certainty of the measurements is often diffi-
cult to measure precisely, it is common to discuss the fil-
ter’s behavior in terms of gain. TheKalman gain is a func-
tion of the relative certainty of themeasurements and cur-
rent state estimate, and can be “tuned” to achieve particu-
lar performance. With a high gain, the filter places more
weight on the measurements, and thus follows them more
closely. With a low gain, the filter follows the model pre-
dictions more closely, smoothing out noise but decreasing
the responsiveness. At the extremes, a gain of one causes
the filter to ignore the state estimate entirely, while a gain
of zero causes the measurements to be ignored.
When performing the actual calculations for the filter (as
discussed below), the state estimate and covariances are
coded into matrices to handle the multiple dimensions in-
volved in a single set of calculations. This allows for rep-
resentation of linear relationships between different state
variables (such as position, velocity, and acceleration) in
any of the transition models or covariances.

2.3 Example application

As an example application, consider the problem of de-
termining the precise location of a truck. The truck can
be equipped with a GPS unit that provides an estimate of
the position within a few meters. The GPS estimate is
likely to be noisy; readings 'jump around' rapidly, though
always remaining within a fewmeters of the real position.
In addition, since the truck is expected to follow the laws
of physics, its position can also be estimated by integrat-
ing its velocity over time, determined by keeping track
of wheel revolutions and the angle of the steering wheel.
This is a technique known as dead reckoning. Typically,
dead reckoning will provide a very smooth estimate of the
truck’s position, but it will drift over time as small errors
accumulate.
In this example, the Kalman filter can be thought of as op-
erating in two distinct phases: predict and update. In the
prediction phase, the truck’s old position will be modified
according to the physical laws of motion (the dynamic or
“state transition” model) plus any changes produced by
the accelerator pedal and steering wheel. Not only will
a new position estimate be calculated, but a new covari-
ance will be calculated as well. Perhaps the covariance
is proportional to the speed of the truck because we are
more uncertain about the accuracy of the dead reckoning
position estimate at high speeds but very certain about the
position estimate when moving slowly. Next, in the up-
date phase, a measurement of the truck’s position is taken
from the GPS unit. Along with this measurement comes
some amount of uncertainty, and its covariance relative to
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that of the prediction from the previous phase determines
how much the new measurement will affect the updated
prediction. Ideally, if the dead reckoning estimates tend
to drift away from the real position, the GPS measure-
ment should pull the position estimate back towards the
real position but not disturb it to the point of becoming
rapidly changing and noisy.

2.4 Technical description and con-
text

The Kalman filter is an efficient recursive filter that
estimates the internal state of a linear dynamic system
from a series of noisy measurements. It is used in a wide
range of engineering and econometric applications from
radar and computer vision to estimation of structural
macroeconomic models,[8][9] and is an important topic in
control theory and control systems engineering. Together
with the linear-quadratic regulator (LQR), the Kalman
filter solves the linear-quadratic-Gaussian control prob-
lem (LQG). The Kalman filter, the linear-quadratic regu-
lator and the linear-quadratic-Gaussian controller are so-
lutions to what arguably are the most fundamental prob-
lems in control theory.
In most applications, the internal state is much larger
(more degrees of freedom) than the few “observable” pa-
rameters which are measured. However, by combining
a series of measurements, the Kalman filter can estimate
the entire internal state.
In Dempster–Shafer theory, each state equation or obser-
vation is considered a special case of a linear belief func-
tion and the Kalman filter is a special case of combining
linear belief functions on a join-tree or Markov tree. Ad-
ditional approaches include belief filters which use Bayes
or evidential updates to the state equations.
A wide variety of Kalman filters have now been devel-
oped, from Kalman’s original formulation, now called
the “simple” Kalman filter, the Kalman–Bucy filter,
Schmidt’s “extended” filter, the information filter, and a
variety of “square-root” filters that were developed by
Bierman, Thornton and many others. Perhaps the most
commonly used type of very simple Kalman filter is the
phase-locked loop, which is now ubiquitous in radios,
especially frequency modulation (FM) radios, television
sets, satellite communications receivers, outer space com-
munications systems, and nearly any other electronic
communications equipment.

2.5 Underlying dynamic system
model

The Kalman filters are based on linear dynamic systems
discretized in the time domain. They are modelled on a

Markov chain built on linear operators perturbed by er-
rors that may include Gaussian noise. The state of the sys-
tem is represented as a vector of real numbers. At each
discrete time increment, a linear operator is applied to the
state to generate the new state, with some noise mixed in,
and optionally some information from the controls on the
system if they are known. Then, another linear operator
mixed with more noise generates the observed outputs
from the true (“hidden”) state. The Kalman filter may
be regarded as analogous to the hidden Markov model,
with the key difference that the hidden state variables
take values in a continuous space (as opposed to a dis-
crete state space as in the hidden Markov model). There
is a strong duality between the equations of the Kalman
Filter and those of the hidden Markov model. A review
of this and other models is given in Roweis and Ghahra-
mani (1999)[10] and Hamilton (1994), Chapter 13.[11]

In order to use the Kalman filter to estimate the inter-
nal state of a process given only a sequence of noisy ob-
servations, one must model the process in accordance
with the framework of the Kalman filter. This means
specifying the following matrices: Fk, the state-transition
model; Hk, the observation model; Qk, the covariance of
the process noise; Rk, the covariance of the observation
noise; and sometimes Bk, the control-input model, for
each time-step, k, as described below.

xk
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by user
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Time= Time= Time=k k k-1 +1

k k
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Model underlying the Kalman filter. Squares represent matri-
ces. Ellipses represent multivariate normal distributions (with the
mean and covariance matrix enclosed). Unenclosed values are
vectors. In the simple case, the various matrices are constant with
time, and thus the subscripts are dropped, but the Kalman filter
allows any of them to change each time step.

The Kalman filter model assumes the true state at time k
is evolved from the state at (k − 1) according to

xk = Fkxk−1 + Bkuk + wk

where

• Fk is the state transition model which is applied to
the previous state xk₋₁;

• Bk is the control-input model which is applied to the
control vector uk;

• wk is the process noise which is assumed to be drawn
from a zero mean multivariate normal distribution
with covariance Qk.

wk ∼ N(0,Qk)
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At time k an observation (or measurement) zk of the true
state xk is made according to

zk = Hkxk + vk

where Hk is the observation model which maps the true
state space into the observed space and vk is the obser-
vation noise which is assumed to be zero mean Gaussian
white noise with covariance Rk.

vk ∼ N(0,Rk)

The initial state, and the noise vectors at each step {x0,
w1, ..., wk, v1 ... vk} are all assumed to be mutually
independent.
Many real dynamical systems do not exactly fit this
model. In fact, unmodelled dynamics can seriously de-
grade the filter performance, even when it was sup-
posed to work with unknown stochastic signals as in-
puts. The reason for this is that the effect of un-
modelled dynamics depends on the input, and, there-
fore, can bring the estimation algorithm to instability
(it diverges). On the other hand, independent white
noise signals will not make the algorithm diverge. The
problem of separating between measurement noise and
unmodelled dynamics is a difficult one and is treated
in control theory under the framework of robust con-
trol.<ref “ishihara06">Ishihara JY, Terra MH, Campos
JCT (2006) “Robust Kalman filter for descriptor sys-
tems”. IEEE Trans. on Automatic Control, v51n8. DOI
10.1109/TAC.2006.878741.</ref><ref “terra14">Terra
MH, Cerri JP, Ishihara JY (2014) “Optimal Robust Lin-
ear Quadratic Regulator for Systems Subject to Uncer-
tainties”. IEEE Trans. on Automatic Control, v59n9.
DOI 10.1109/TAC.2014.2309282.</ref>

2.6 Details

The Kalman filter is a recursive estimator. This means
that only the estimated state from the previous time step
and the current measurement are needed to compute the
estimate for the current state. In contrast to batch esti-
mation techniques, no history of observations and/or es-
timates is required. In what follows, the notation x̂n|m
represents the estimate of x at time n given observations
up to, and including at time m ≤ n.
The state of the filter is represented by two variables:

• x̂k|k , the a posteriori state estimate at time k given
observations up to and including at time k;

• Pk|k , the a posteriori error covariance matrix (a
measure of the estimated accuracy of the state es-
timate).

The Kalman filter can be written as a single equation,
however it is most often conceptualized as two distinct
phases: “Predict” and “Update”. The predict phase uses
the state estimate from the previous timestep to produce
an estimate of the state at the current timestep. This pre-
dicted state estimate is also known as the a priori state
estimate because, although it is an estimate of the state at
the current timestep, it does not include observation in-
formation from the current timestep. In the update phase,
the current a priori prediction is combined with current
observation information to refine the state estimate. This
improved estimate is termed the a posteriori state esti-
mate.
Typically, the two phases alternate, with the prediction
advancing the state until the next scheduled observation,
and the update incorporating the observation. However,
this is not necessary; if an observation is unavailable for
some reason, the updatemay be skipped andmultiple pre-
diction steps performed. Likewise, if multiple indepen-
dent observations are available at the same time, multiple
update steps may be performed (typically with different
observation matrices Hk).[12][13]

2.6.1 Predict

2.6.2 Update

The formula for the updated estimate and covariance
above is only valid for the optimal Kalman gain. Usage of
other gain values require a more complex formula found
in the derivations section.

2.6.3 Invariants

If the model is accurate, and the values for x̂0|0 and P0|0
accurately reflect the distribution of the initial state val-
ues, then the following invariants are preserved: (all esti-
mates have a mean error of zero)

• E[xk − x̂k|k] = E[xk − x̂k|k−1] = 0

• E[ỹk] = 0

where E[ξ] is the expected value of ξ , and covariance
matrices accurately reflect the covariance of estimates

• Pk|k = cov(xk − x̂k|k)

• Pk|k−1 = cov(xk − x̂k|k−1)

• Sk = cov(ỹk)

2.6.4 Estimation of the noise covariances
Qk and Rk

Practical implementation of the Kalman Filter is of-
ten difficult due to the difficulty of getting a good esti-
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mate of the noise covariance matrices Qk and Rk. Ex-
tensive research has been done in this field to estimate
these covariances from data. One of the more promis-
ing and practical approaches to do this is the Autoco-
variance Least-Squares (ALS) technique that uses the
time-lagged autocovariances of routine operating data to
estimate the covariances.[14][15] The GNU Octave and
Matlab code used to calculate the noise covariance ma-
trices using the ALS technique is available online under
the GNU General Public License license.[16]

2.6.5 Optimality and performance

It follows from theory that the Kalman filter is optimal
cases where a) the model perfectly matches the real sys-
tem, b) the entering noise is white and c) the covariances
of the noise are exactly known. Several methods for the
noise covariance estimation have been proposed during
past decades, including ALS, mentioned in the previous
paragraph. After the covariances are estimated, it is use-
ful to evaluate the performance of the filter, i.e. whether it
is possible to improve the state estimation quality. If the
Kalman filter works optimally, the innovation sequence
(the output prediction error) is a white noise, therefore
the whiteness property of the innovations measures filter
performance. Several different methods can be used for
this purpose.[17]

2.7 Example application, technical

Consider a truck on frictionless, straight rails. Initially the
truck is stationary at position 0, but it is buffeted this way
and that by random uncontrolled forces. We measure the
position of the truck every Δt seconds, but these mea-
surements are imprecise; we want to maintain a model
of where the truck is and what its velocity is. We show
here how we derive the model from which we create our
Kalman filter.
Since F,H,R,Q are constant, their time indices are
dropped.
The position and velocity of the truck are described by
the linear state space

xk =

[
x
ẋ

]
where ẋ is the velocity, that is, the derivative of position
with respect to time.
We assume that between the (k − 1) and k timestep un-
controlled forces cause a constant acceleration of ak that
is normally distributed, with mean 0 and standard devia-
tion σa. From Newton’s laws of motion we conclude that

xk = Fxk−1 +Gak

(note that there is no Bu term since we have no known
control inputs. Instead, we assume that ak is the effect of
an unknown input and G applies that effect to the state
vector) where

F =

[
1 ∆t
0 1

]
and

G =

[
∆t2

2

∆t

]

so that

xk = Fxk−1 + wk

where wk ∼ N(0,Q) and

Q = GGTσ2
a =

∆t4

4
∆t3

2

∆t3

2 ∆t2

σ2
a.

At each time step, a noisy measurement of the true po-
sition of the truck is made. Let us suppose the measure-
ment noise vk is also normally distributed, with mean 0
and standard deviation σz.

zk = Hxk + vk

where

H =
[
1 0

]
and

R = E[vkvTk] =
[
σ2
z

]
We know the initial starting state of the truck with perfect
precision, so we initialize

x̂0|0 =

[
0
0

]
and to tell the filter that we know the exact position and
velocity, we give it a zero covariance matrix:

P0|0 =

[
0 0
0 0

]
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If the initial position and velocity are not known perfectly
the covariance matrix should be initialized with a suitably
large number, say L, on its diagonal.

P0|0 =

[
L 0
0 L

]
The filter will then prefer the information from the first
measurements over the information already in the model.

2.8 Derivations

2.8.1 Deriving the a posteriori estimate co-
variance matrix

Starting with our invariant on the error covariance Pk | k
as above

Pk|k = cov(xk − x̂k|k)
substitute in the definition of x̂k|k

Pk|k = cov(xk − (x̂k|k−1 +Kkỹk))
and substitute ỹk

Pk|k = cov(xk − (x̂k|k−1 +Kk(zk −Hkx̂k|k−1)))

and zk

Pk|k = cov(xk−(x̂k|k−1+Kk(Hkxk+vk−Hkx̂k|k−1)))

and by collecting the error vectors we get

Pk|k = cov((I −KkHk)(xk − x̂k|k−1)−Kkvk)
Since the measurement error vk is uncorrelated with the
other terms, this becomes

Pk|k = cov((I −KkHk)(xk − x̂k|k−1)) + cov(Kkvk)
by the properties of vector covariance this becomes

Pk|k = (I−KkHk)cov(xk−x̂k|k−1)(I−KkHk)
T+Kkcov(vk)KT

k

which, using our invariant on Pk | k₋₁ and the definition
of Rk becomes

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkKT

k

This formula (sometimes known as the "Joseph form"
of the covariance update equation) is valid for any value
ofKk. It turns out that ifKk is the optimal Kalman gain,
this can be simplified further as shown below.

2.8.2 Kalman gain derivation

The Kalman filter is a minimum mean-square error esti-
mator. The error in the a posteriori state estimation is

xk − x̂k|k
We seek to minimize the expected value of the square
of the magnitude of this vector, E[∥xk − x̂k|k∥2] . This
is equivalent to minimizing the trace of the a posteriori
estimate covariance matrix Pk|k . By expanding out the
terms in the equation above and collecting, we get:

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1HT
kKT

k +Kk(HkPk|k−1HT
k + Rk)KT

k

= Pk|k−1 −KkHkPk|k−1 − Pk|k−1HT
kKT

k +KkSkKT
k

The trace is minimized when its matrix derivative with
respect to the gain matrix is zero. Using the gradient ma-
trix rules and the symmetry of the matrices involved we
find that

∂ tr(Pk|k)

∂ Kk
= −2(HkPk|k−1)

T + 2KkSk = 0.

Solving this for Kk yields the Kalman gain:

KkSk = (HkPk|k−1)
T = Pk|k−1HT

k

Kk = Pk|k−1HT
kS−1

k

This gain, which is known as the optimal Kalman gain, is
the one that yields MMSE estimates when used.

2.8.3 Simplification of the a posteriori er-
ror covariance formula

The formula used to calculate the a posteriori error co-
variance can be simplified when the Kalman gain equals
the optimal value derived above. Multiplying both sides
of our Kalman gain formula on the right by SkKkT , it
follows that

KkSkKT
k = Pk|k−1HT

kKT
k

Referring back to our expanded formula for the a poste-
riori error covariance,

Pk|k = Pk|k−1−KkHkPk|k−1−Pk|k−1HT
kKT

k+KkSkKT
k

we find the last two terms cancel out, giving

Pk|k = Pk|k−1 −KkHkPk|k−1 = (I −KkHk)Pk|k−1.
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This formula is computationally cheaper and thus nearly
always used in practice, but is only correct for the op-
timal gain. If arithmetic precision is unusually low caus-
ing problems with numerical stability, or if a non-optimal
Kalman gain is deliberately used, this simplification can-
not be applied; the a posteriori error covariance formula
as derived above must be used.

2.9 Sensitivity analysis

The Kalman filtering equations provide an estimate of the
state x̂k|k and its error covariance Pk|k recursively. The
estimate and its quality depend on the system parameters
and the noise statistics fed as inputs to the estimator. This
section analyzes the effect of uncertainties in the statisti-
cal inputs to the filter.[18] In the absence of reliable statis-
tics or the true values of noise covariance matrices Qk

and Rk , the expression

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRkKT

k

no longer provides the actual error covariance. In other
words, Pk|k ̸= E[(xk− x̂k|k)(xk− x̂k|k)T] . In most real
time applications the covariance matrices that are used
in designing the Kalman filter are different from the ac-
tual noise covariances matrices. This sensitivity analysis
describes the behavior of the estimation error covariance
when the noise covariances as well as the system matrices
Fk andHk that are fed as inputs to the filter are incorrect.
Thus, the sensitivity analysis describes the robustness (or
sensitivity) of the estimator to misspecified statistical and
parametric inputs to the estimator.
This discussion is limited to the error sensitivity anal-
ysis for the case of statistical uncertainties. Here the
actual noise covariances are denoted by Qa

k and Ra
k re-

spectively, whereas the design values used in the estima-
tor are Qk and Rk respectively. The actual error co-
variance is denoted by Pa

k|k and Pk|k as computed by
the Kalman filter is referred to as the Riccati variable.
When Qk ≡ Qa

k and Rk ≡ Ra
k , this means that

Pk|k = Pa
k|k . While computing the actual error covari-

ance using Pa
k|k = E[(xk − x̂k|k)(xk − x̂k|k)T] , sub-

stituting for x̂k|k and using the fact that E[wkwT
k] = Qa

k

and E[vkvTk] = Ra
k , results in the following recursive

equations for Pa
k|k :

Pa
k|k−1 = FkPa

k−1|k−1FTk +Qa
k

and

Pa
k|k = (I−KkHk)Pa

k|k−1(I−KkHk)
T +KkRa

kKT
k

While computing Pk|k , by design the filter implicitly as-
sumes that E[wkwT

k] = Qk and E[vkvTk] = Rk . Note

that the recursive expressions for Pa
k|k and Pk|k are iden-

tical except for the presence ofQa
k andRa

k in place of the
design values Qk and Rk respectively.

2.10 Square root form

One problemwith theKalman filter is its numerical stabil-
ity. If the process noise covarianceQk is small, round-off
error often causes a small positive eigenvalue to be com-
puted as a negative number. This renders the numerical
representation of the state covariance matrix P indefinite,
while its true form is positive-definite.
Positive definite matrices have the property that they have
a triangular matrix square root P = S·ST. This can be
computed efficiently using the Cholesky factorization al-
gorithm, but more importantly, if the covariance is kept
in this form, it can never have a negative diagonal or
become asymmetric. An equivalent form, which avoids
many of the square root operations required by the matrix
square root yet preserves the desirable numerical proper-
ties, is the U-D decomposition form, P = U·D·UT, where
U is a unit triangular matrix (with unit diagonal), and D
is a diagonal matrix.
Between the two, the U-D factorization uses the same
amount of storage, and somewhat less computation, and
is the most commonly used square root form. (Early lit-
erature on the relative efficiency is somewhat misleading,
as it assumed that square roots were much more time-
consuming than divisions,[19]:69 while on 21-st century
computers they are only slightly more expensive.)
Efficient algorithms for the Kalman prediction and up-
date steps in the square root form were developed by G.
J. Bierman and C. L. Thornton.[19][20]

The L·D·LT decomposition of the innovation covariance
matrix S is the basis for another type of numerically effi-
cient and robust square root filter.[21] The algorithm starts
with the LU decomposition as implemented in the Linear
Algebra PACKage (LAPACK). These results are further
factored into the L·D·LT structure with methods given by
Golub and Van Loan (algorithm 4.1.2) for a symmetric
nonsingular matrix.[22] Any singular covariance matrix is
pivoted so that the first diagonal partition is nonsingular
and well-conditioned. The pivoting algorithm must re-
tain any portion of the innovation covariance matrix di-
rectly corresponding to observed state-variables H ·x | -
₁ that are associated with auxiliary observations in y .
The L·D·LT square-root filter requires orthogonalization
of the observation vector.[20][21] This may be done with
the inverse square-root of the covariance matrix for the
auxiliary variables using Method 2 in Higham (2002, p.
263).[23]
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2.11 Relationship to recursive
Bayesian estimation

The Kalman filter can be presented as one of the most
simple dynamic Bayesian networks. The Kalman filter
calculates estimates of the true values of states recursively
over time using incomingmeasurements and a mathemat-
ical process model. Similarly, recursive Bayesian estima-
tion calculates estimates of an unknown probability den-
sity function (PDF) recursively over time using incoming
measurements and a mathematical process model.[24]

In recursive Bayesian estimation, the true state is assumed
to be an unobserved Markov process, and the measure-
ments are the observed states of a hidden Markov model
(HMM).

Hidden Markov model

Because of the Markov assumption, the true state is con-
ditionally independent of all earlier states given the im-
mediately previous state.

p(xk | x0, . . . , xk−1) = p(xk | xk−1)

Similarly the measurement at the k-th timestep is depen-
dent only upon the current state and is conditionally inde-
pendent of all other states given the current state.

p(zk | x0, . . . , xk) = p(zk | xk)
Using these assumptions the probability distribution over
all states of the hidden Markov model can be written sim-
ply as:

p(x0, . . . , xk, z1, . . . , zk) = p(x0)
k∏

i=1

p(zi | xi)p(xi | xi−1)

However, when the Kalman filter is used to estimate the
state x, the probability distribution of interest is that as-
sociated with the current states conditioned on the mea-
surements up to the current timestep. This is achieved by
marginalizing out the previous states and dividing by the
probability of the measurement set.
This leads to the predict and update steps of the Kalman
filter written probabilistically. The probability distribu-
tion associated with the predicted state is the sum (inte-
gral) of the products of the probability distribution asso-
ciated with the transition from the (k − 1)-th timestep to

the k-th and the probability distribution associated with
the previous state, over all possible xk−1 .

p(xk | Zk−1) =

∫
p(xk | xk−1)p(xk−1 | Zk−1) dxk−1

The measurement set up to time t is

Zt = {z1, . . . , zt}

The probability distribution of the update is proportional
to the product of the measurement likelihood and the pre-
dicted state.

p(xk | Zk) =
p(zk | xk)p(xk | Zk−1)

p(zk | Zk−1)

The denominator

p(zk | Zk−1) =

∫
p(zk | xk)p(xk | Zk−1)dxk

is a normalization term.
The remaining probability density functions are

p(xk | xk−1) = N (Fkxk−1,Qk)

p(zk | xk) = N (Hkxk,Rk)

p(xk−1 | Zk−1) = N (x̂k−1,Pk−1)

Note that the PDF at the previous timestep is inductively
assumed to be the estimated state and covariance. This
is justified because, as an optimal estimator, the Kalman
filter makes best use of the measurements, therefore the
PDF for xk given the measurements Zk is the Kalman
filter estimate.

2.12 Information filter

In the information filter, or inverse covariance filter, the
estimated covariance and estimated state are replaced by
the information matrix and information vector respec-
tively. These are defined as:

Yk|k = P−1
k|k

ŷk|k = P−1
k|kx̂k|k

Similarly the predicted covariance and state have equiva-
lent information forms, defined as:

Yk|k−1 = P−1
k|k−1

https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
https://en.wikipedia.org/wiki/Recursive_Bayesian_estimation
https://en.wikipedia.org/wiki/Recursive_Bayesian_estimation
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Markov_process
https://en.wikipedia.org/wiki/Fisher_information_matrix
https://en.wikipedia.org/wiki/Fisher_information
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ŷk|k−1 = P−1
k|k−1x̂k|k−1

as have the measurement covariance and measurement
vector, which are defined as:

Ik = HT
kR−1

k Hk

ik = HT
kR−1

k zk
The information update now becomes a trivial sum.

Yk|k = Yk|k−1 + Ik
ŷk|k = ŷk|k−1 + ik
The main advantage of the information filter is that N
measurements can be filtered at each timestep simply by
summing their information matrices and vectors.

Yk|k = Yk|k−1 +
N∑
j=1

Ik,j

ŷk|k = ŷk|k−1 +
N∑
j=1

ik,j

To predict the information filter the information matrix
and vector can be converted back to their state space
equivalents, or alternatively the information space predic-
tion can be used.

Mk = [F−1
k ]TYk−1|k−1F−1

k

Ck = Mk[Mk +Q−1
k ]−1

Lk = I − Ck

Yk|k−1 = LkMkLT
k + CkQ−1

k CT
k

ŷk|k−1 = Lk[F−1
k ]Tŷk−1|k−1

Note that if F and Q are time invariant these values can
be cached. Note also that F and Q need to be invertible.

2.13 Fixed-lag smoother

The optimal fixed-lag smoother provides the optimal es-
timate of x̂k−N |k for a given fixed-lag N using the mea-
surements from z1 to zk . It can be derived using the pre-
vious theory via an augmented state, and the main equa-
tion of the filter is the following:


x̂t|t
x̂t−1|t
...

x̂t−N+1|t

 =


I
0
...
0

x̂t|t−1+


0 . . . 0

I 0
...

... . . . ...
0 . . . I




x̂t−1|t−1

x̂t−2|t−1

...
x̂t−N+1|t−1

+


K(0)

K(1)

...
K(N−1)

yt|t−1

where:

• x̂t|t−1 is estimated via a standard Kalman filter;

• yt|t−1 = z(t)−Hx̂t|t−1 is the innovation produced
considering the estimate of the standard Kalman fil-
ter;

• the various x̂t−i|t with i = 0, . . . , N are new vari-
ables, i.e. they do not appear in the standard Kalman
filter;

• the gains are computed via the following scheme:

K(i) = P(i)HT
[
HPHT + R

]−1

and

P(i) = P
[
[F−KH]

T
]i

where P and K are the prediction error covari-
ance and the gains of the standard Kalman filter
(i.e., Pt|t−1 ).

If the estimation error covariance is defined so that

Pi := E
[(
xt−i − x̂t−i|t

)∗ (xt−i − x̂t−i|t
)
| z1 . . . zt

]
,

then we have that the improvement on the estimation of
xt−i is given by:

P− Pi =

i∑
j=0

[
P(j)HT

[
HPHT + R

]−1H
(
P(i)

)T]

2.14 Fixed-interval smoothers

The optimal fixed-interval smoother provides the optimal
estimate of x̂k|n ( k < n ) using the measurements from
a fixed interval z1 to zn . This is also called “Kalman
Smoothing”. There are several smoothing algorithms in
common use.

2.14.1 Rauch–Tung–Striebel

The Rauch–Tung–Striebel (RTS) smoother is an efficient
two-pass algorithm for fixed interval smoothing.[25]

The forward pass is the same as the regular Kalman filter
algorithm. These filtered state estimates x̂k|k and covari-
ances Pk|k are saved for use in the backwards pass.
In the backwards pass, we compute the smoothed state
estimates x̂k|n and covariances Pk|n . We start at the last
time step and proceed backwards in time using the fol-
lowing recursive equations:
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x̂k|n = x̂k|k + Ck(x̂k+1|n − x̂k+1|k)

Pk|n = Pk|k + Ck(Pk+1|n − Pk+1|k)CT
k

where

Ck = Pk|kFTkP−1
k+1|k

2.14.2 Modified Bryson–Frazier smoother

An alternative to the RTS algorithm is the modified
Bryson–Frazier (MBF) fixed interval smoother developed
by Bierman.[20] This also uses a backward pass that pro-
cesses data saved from the Kalman filter forward pass.
The equations for the backward pass involve the recursive
computation of data which are used at each observation
time to compute the smoothed state and covariance.
The recursive equations are

Λ̃k = HT
k S−1

k Hk + ĈT

k Λ̂kĈk

Λ̂k−1 = FT
k Λ̃kFk

Λ̂n = 0

λ̃k = −HT
k S−1

k yk + ĈT

k λ̂k

λ̂k−1 = FT
k λ̃k

λ̂n = 0

where Sk is the residual covariance and Ĉk = I−KkHk

. The smoothed state and covariance can then be found
by substitution in the equations

Pk|n = Pk|k − Pk|kΛ̂kPk|k

xk|n = xk|k − Pk|kλ̂k

or

Pk|n = Pk|k−1 − Pk|k−1Λ̃kPk|k−1

xk|n = xk|k−1 − Pk|k−1λ̃k.

An important advantage of the MBF is that it does not
require finding the inverse of the covariance matrix.

2.14.3 Minimum-variance smoother

The minimum-variance smoother can attain the best-
possible error performance, provided that the models are
linear, their parameters and the noise statistics are known
precisely.[26] This smoother is a time-varying state-space
generalization of the optimal non-causal Wiener filter.
The smoother calculations are done in two passes. The
forward calculations involve a one-step-ahead predictor
and are given by

x̂k+1|k = (Fk −KkHk)x̂k|k−1 +Kkzk

αk = −S−1/2
k Hkx̂k|k−1 + S−1/2

k zk

The above system is known as the inverse Wiener-Hopf
factor. The backward recursion is the adjoint of the above
forward system. The result of the backward pass βk may
be calculated by operating the forward equations on the
time-reversed αk and time reversing the result. In the
case of output estimation, the smoothed estimate is given
by

ŷk|N = zk − Rkβk

Taking the causal part of this minimum-variance
smoother yields

ŷk|k = zk − RkS−1/2
k αk

which is identical to the minimum-variance Kalman fil-
ter. The above solutionsminimize the variance of the out-
put estimation error. Note that the Rauch–Tung–Striebel
smoother derivation assumes that the underlying distribu-
tions are Gaussian, whereas the minimum-variance solu-
tions do not. Optimal smoothers for state estimation and
input estimation can be constructed similarly.
A continuous-time version of the above smoother is de-
scribed in.[27][28]

Expectation-maximization algorithms may be employed
to calculate approximate maximum likelihood estimates
of unknown state-space parameters within minimum-
variance filters and smoothers. Often uncertainties re-
main within problem assumptions. A smoother that ac-
commodates uncertainties can be designed by adding a
positive definite term to the Riccati equation.[29]

In cases where the models are nonlinear, step-wise lin-
earizations may be within the minimum-variance filter
and smoother recursions (extended Kalman filtering).

https://en.wikipedia.org/wiki/Wiener_filter
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Extended_Kalman_filter
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2.15 Frequency Weighted Kalman
filters

Pioneering research on the perception of sounds at differ-
ent frequencies was conducted by Fletcher andMunson in
the 1930s. Their work led to a standard way of weighting
measured sound levels within investigations of industrial
noise and hearing loss. Frequency weightings have since
been used within filter and controller designs to manage
performance within bands of interest.
Typically, a frequency shaping function is used to weight
the average power of the error spectral density in a spec-
ified frequency band. Let y - ŷ denote the output esti-
mation error exhibited by a conventional Kalman filter.
Also, let W denote a causal frequency weighting trans-
fer function. The optimum solution which minimizes the
variance of W ( y - ŷ ) arises by simply constructing
W−1ŷ .
The design of W remains an open question. One way
of proceeding is to identify a system which generates the
estimation error and setting W equal to the inverse of
that system.[30] This procedure may be iterated to ob-
tain mean-square error improvement at the cost of in-
creased filter order. The same technique can be applied
to smoothers.

2.16 Non-linear filters

The basic Kalman filter is limited to a linear assumption.
More complex systems, however, can be nonlinear. The
non-linearity can be associated either with the process
model or with the observation model or with both.

2.16.1 Extended Kalman filter

Main article: Extended Kalman filter

In the extended Kalman filter (EKF), the state transition
and observation models need not be linear functions of
the state but may instead be non-linear functions. These
functions are of differentiable type.

xk = f(xk−1,uk) + wk

zk = h(xk) + vk
The function f can be used to compute the predicted state
from the previous estimate and similarly the function h
can be used to compute the predicted measurement from
the predicted state. However, f and h cannot be applied to
the covariance directly. Instead a matrix of partial deriva-
tives (the Jacobian) is computed.
At each timestep the Jacobian is evaluated with cur-
rent predicted states. These matrices can be used in

the Kalman filter equations. This process essentially lin-
earizes the non-linear function around the current esti-
mate.

2.16.2 Unscented Kalman filter

When the state transition and observation models—that
is, the predict and update functions f and h—are highly
non-linear, the extended Kalman filter can give partic-
ularly poor performance.[31] This is because the covari-
ance is propagated through linearization of the underlying
non-linear model. The unscented Kalman filter (UKF)
[31] uses a deterministic sampling technique known as
the unscented transform to pick a minimal set of sam-
ple points (called sigma points) around the mean. These
sigma points are then propagated through the non-linear
functions, from which the mean and covariance of the
estimate are then recovered. The result is a filter which
more accurately captures the true mean and covariance.
(This can be verified using Monte Carlo sampling or
through a Taylor series expansion of the posterior statis-
tics.) In addition, this technique removes the requirement
to explicitly calculate Jacobians, which for complex func-
tions can be a difficult task in itself (i.e., requiring com-
plicated derivatives if done analytically or being compu-
tationally costly if done numerically).

Predict

As with the EKF, the UKF prediction can be used inde-
pendently from the UKF update, in combination with a
linear (or indeed EKF) update, or vice versa.
The estimated state and covariance are augmented with
the mean and covariance of the process noise.

xak−1|k−1 = [x̂Tk−1|k−1 E[wT
k] ]

T

Pa
k−1|k−1 =

[
Pk−1|k−1 0

0 Qk

]
A set of 2L + 1 sigma points is derived from the aug-
mented state and covariance where L is the dimension of
the augmented state.

χ0
k−1|k−1 = xak−1|k−1

χi
k−1|k−1 = xak−1|k−1+

(√
(L+ λ)Pa

k−1|k−1

)
i
, i = 1, . . . , L

χi
k−1|k−1 = xak−1|k−1−

(√
(L+ λ)Pa

k−1|k−1

)
i−L

, i = L+1, . . . , 2L

where

(√
(L+ λ)Pa

k−1|k−1

)
i

https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Differentiable
https://en.wikipedia.org/wiki/Jacobian_matrix
https://en.wikipedia.org/wiki/Unscented_transform
https://en.wikipedia.org/wiki/Monte_Carlo_sampling
https://en.wikipedia.org/wiki/Taylor_series
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is the ith column of the matrix square root of

(L+ λ)Pa
k−1|k−1

using the definition: square root A of matrix B satisfies

B ≜ AAT.

The matrix square root should be calculated using numer-
ically efficient and stable methods such as the Cholesky
decomposition.
The sigma points are propagated through the transition
function f.

χi
k|k−1 = f(χi

k−1|k−1) i = 0, . . . , 2L

where f : RL → R|x| . Theweighted sigma points are re-
combined to produce the predicted state and covariance.

x̂k|k−1 =
2L∑
i=0

W i
sχ

i
k|k−1

Pk|k−1 =
2L∑
i=0

W i
c [χ

i
k|k−1− x̂k|k−1][χ

i
k|k−1− x̂k|k−1]

T

where the weights for the state and covariance are given
by:

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ (1− α2 + β)

W i
s = W i

c =
1

2(L+ λ)

λ = α2(L+ κ)− L

α and κ control the spread of the sigma points. β is re-
lated to the distribution of x . Normal values are α =
10−3 , κ = 0 and β = 2 . If the true distribution of x is
Gaussian, β = 2 is optimal.[32]

Update

The predicted state and covariance are augmented as be-
fore, except now with the mean and covariance of the
measurement noise.

xak|k−1 = [x̂Tk|k−1 E[vTk] ]T

Pa
k|k−1 =

[
Pk|k−1 0

0 Rk

]

As before, a set of 2L + 1 sigma points is derived from the
augmented state and covariance where L is the dimension
of the augmented state.

χ0
k|k−1 = xak|k−1

χi
k|k−1 = xak|k−1 +

(√
(L+ λ)Pa

k|k−1

)
i
, i = 1, . . . , L

χi
k|k−1 = xak|k−1 −

(√
(L+ λ)Pa

k|k−1

)
i−L

, i = L+ 1, . . . , 2L

Alternatively if the UKF prediction has been used the
sigma points themselves can be augmented along the fol-
lowing lines

χk|k−1 := [χT
k|k−1 E[vTk] ]T ±

√
(L+ λ)Ra

k

where

Ra
k =

[
0 0
0 Rk

]
The sigma points are projected through the observation
function h.

γi
k = h(χi

k|k−1) i = 0..2L

The weighted sigma points are recombined to produce
the predicted measurement and predicted measurement
covariance.

ẑk =

2L∑
i=0

W i
sγ

i
k

Pzkzk =

2L∑
i=0

W i
c [γi

k − ẑk][γi
k − ẑk]T

The state-measurement cross-covariance matrix,

Pxkzk =
2L∑
i=0

W i
c [χi

k|k−1 − x̂k|k−1][γ
i
k − ẑk]T

is used to compute the UKF Kalman gain.

Kk = PxkzkP−1
zkzk

As with the Kalman filter, the updated state is the pre-
dicted state plus the innovation weighted by the Kalman
gain,

x̂k|k = x̂k|k−1 +Kk(zk − ẑk)

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Cholesky_decomposition
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And the updated covariance is the predicted covariance,
minus the predicted measurement covariance, weighted
by the Kalman gain.

Pk|k = Pk|k−1 −KkPzkzkK
T
k

2.17 Kalman–Bucy filter

The Kalman–Bucy filter (named after Richard Snow-
den Bucy) is a continuous time version of the Kalman
filter.[33][34]

It is based on the state space model

d

dt
x(t) = F(t)x(t) + B(t)u(t) + w(t)

z(t) = H(t)x(t) + v(t)

where Q(t) and R(t) represent the intensities of the two
white noise terms w(t) and v(t) , respectively.
The filter consists of two differential equations, one for
the state estimate and one for the covariance:

d

dt
x̂(t) = F(t)x̂(t)+B(t)u(t)+K(t)(z(t)−H(t)x̂(t))

d

dt
P(t) = F(t)P(t)+P(t)FT (t)+Q(t)−K(t)R(t)KT (t)

where the Kalman gain is given by

K(t) = P(t)HT (t)R−1(t)

Note that in this expression forK(t) the covariance of the
observation noise R(t) represents at the same time the
covariance of the prediction error (or innovation) ỹ(t) =
z(t)−H(t)x̂(t) ; these covariances are equal only in the
case of continuous time.[35]

The distinction between the prediction and update steps
of discrete-time Kalman filtering does not exist in contin-
uous time.
The second differential equation, for the covariance, is an
example of a Riccati equation.

2.18 Hybrid Kalman filter

Most physical systems are represented as continuous-
time models while discrete-time measurements are fre-
quently taken for state estimation via a digital processor.
Therefore, the system model and measurement model are
given by

ẋ(t) = F(t)x(t) + B(t)u(t) + w(t), w(t) ∼ N
(
0,Q(t)

)
zk = Hkxk + vk, vk ∼ N(0,Rk)

where

xk = x(tk)

Initialize x̂0|0 = E
[
x(t0)

]
,P0|0 = V ar

[
x(t0)

]

Predict

˙̂x(t) = F(t)x̂(t) + B(t)u(t) with ,x̂(tk−1) = x̂k−1|k−1

⇒x̂k|k−1 = x̂(tk)
Ṗ(t) = F(t)P(t) + P(t)F(t)T +Q(t) with ,P(tk−1) = Pk−1|k−1

⇒Pk|k−1 = P(tk)

The prediction equations are derived from those of
continuous-time Kalman filter without update from mea-
surements, i.e., K(t) = 0 . The predicted state and co-
variance are calculated respectively by solving a set of
differential equations with the initial value equal to the
estimate at the previous step.

Update Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

Pk|k = (I−KkHk)Pk|k−1

The update equations are identical to those of the
discrete-time Kalman filter.

2.19 Variants for the recovery of
sparse signals

Recently the traditional Kalman filter has been employed
for the recovery of sparse, possibly dynamic, signals from
noisy observations. Both works[36] and[37] utilize notions
from the theory of compressed sensing/sampling, such as
the restricted isometry property and related probabilis-
tic recovery arguments, for sequentially estimating the
sparse state in intrinsically low-dimensional systems.

2.20 Applications

• Attitude and Heading Reference Systems

• Autopilot

• Battery state of charge (SoC) estimation[38][39]

• Brain-computer interface

• Chaotic signals

https://en.wikipedia.org/wiki/Riccati_equation
https://en.wikipedia.org/wiki/Sparse_signal
https://en.wikipedia.org/wiki/Compressed_sensing
https://en.wikipedia.org/wiki/Attitude_and_Heading_Reference_Systems
https://en.wikipedia.org/wiki/Autopilot
https://en.wikipedia.org/wiki/Brain-computer_interface
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• Tracking and Vertex Fitting of charged particles in
Particle Detectors[40]

• Tracking of objects in computer vision

• Dynamic positioning

• Economics, in particular macroeconomics, time se-
ries analysis, and econometrics[41]

• Inertial guidance system

• Orbit Determination

• Power system state estimation

• Radar tracker

• Satellite navigation systems

• Seismology[42]

• Sensorless control of AC motor variable-frequency
drives

• Simultaneous localization and mapping

• Speech enhancement

• Weather forecasting

• Navigation system

• 3D modeling

• Structural health monitoring

• Human sensorimotor processing[43]

2.21 See also
• Alpha beta filter

• Bayesian MMSE estimator

• Covariance intersection

• Data assimilation

• Ensemble Kalman filter

• Extended Kalman filter

• Fast Kalman filter

• Filtering problem (stochastic processes)

• Generalized filtering

• Invariant extended Kalman filter

• Kernel adaptive filter

• Linear-quadratic-Gaussian control

• Moving horizon estimation

• Non-linear filter

• Particle filter estimator

• Predictor corrector

• Recursive least squares

• Schmidt–Kalman filter

• Separation principle

• Sliding mode control

• Stochastic differential equations

• Volterra series

• Wiener filter

• Zakai equation
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2001 Course, Greg Welch and Gary Bishop
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timation, and Control, vol. 1, by Peter S. Maybeck
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• “Kalman Filtering”. Archived from the original on
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• Kalman Filters, thorough introduction to several
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• Kalman filters used in Weather models, SIAM
News, Volume 36, Number 8, October 2003.
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and Moving-Horizon Estimation, Ind. Eng. Chem.
Res., 44 (8), 2451–2460, 2005.

• Kalman and Bayesian Filters in Python Free book
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book.
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Spaces A comprehensive introduction.
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• Extended Kalman Filters explained in the context of
Simulation, Estimation, Control, and Optimization

• Online demo of the Kalman Filter. Demonstration
of Kalman Filter (and other data assimilation meth-
ods) using twin experiments.

• Handling noisy environments: the k-NN delta s, on-
line adaptive filter. in Robust high performance
reinforcement learning through weighted k-nearest
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